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Abiotic stresses, such as heat and drought, often reduce crop yields by harming plant health. Plants have evolved 
complex signaling networks to mitigate environmental impacts, making monitoring in-situ biosignals a promis-
ing tool for assessing plant health in real time. In this study, needle-like sensors were used to measure electrical 
potential changes in oat and canola plants under heat and drought stress conditions. Signals were recorded over a 
30-min period and segmented into time intervals of 1-, 5-, 10-, 20-, and 30-min. Machine learning algorithms, 
including Random Forest, K-Nearest Neighbors, and Support Vector Machines, were applied to classify stress con-
ditions and estimate biomass based on 14 extracted bioelectrical features, such as signal amplitude and entropy. 
Results showed that heat stress primarily altered signal patterns, whereas drought stress affected the signal in-
tensity, possibly due to a reduction in the flow rate of charged ions. Random Forest classifier successfully identi-
fied over 85 % of stressed crops within 30 min of signal recording. These signals also explained 58–95 % of the 
variation in plant aboveground and root biomass, depending on stress intensity and crop genotype. This study 
demonstrates the potential of using bioelectrical sensing as a rapid and efficient tool for stress detection and bio-
mass estimation. Future research should explore the ability to use biosensors to capture genetic variability to mit-
igate abiotic stresses and combine this with remote sensing and other emerging precision agriculture 
technologies. 

© 2025 © His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food 
Canada. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article 

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
1. Introduction 

Global climate change is dramatically altering growing conditions 
for major crops, with extreme weather events such as prolonged 
droughts and heatwaves becoming more frequent and severe (Zeng 
et al., 2023). These environmentally induced stressors pose significant 
challenges to agricultural productivity, leading to substantial yield de-
clines and threatening global food security. A meta-analysis reported 
that heat and drought stress reduced crop yields by 33 % and 48 %, 
respectively, while their combined impacts caused an average yield re-
duction of 65 % (Cohen et al., 2021). Certain flowering crops such as 
canola (Brassica napus L.) are particularly sensitive to high temperature 
stress, with yield losses exceeding 60 % due to pollen abortion and pol-
lination failure (Wu et al., 2021). In extreme cases, drought events 
coupled with heat stress can result in up to 85 % of crop yield reductions 
(Wen et al., 2023a). A four-year study in eastern Canada found that ab-
normally high temperatures and erratic precipitation caused canola 
yield losses of 20 % and 9 %, respectively (Wen et al., 2021). Therefore, 
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it is crucial to develop rapid and effective methods to assess plant health 
degradation across broad heat and drought gradients. This foundational 
step is vital for implementing effective and sensitive targeted remedia-
tion strategies to mitigate the negative impacts of these environmental 
stressors. 

The adverse effects of weather-related stresses on crop production 
are primarily attributed to their impacts on the physiological, chemical, 
and morphological functions. For example, high temperatures can se-
verely disrupt plant photosynthesis and respiration by impairing en-
zyme activity, chloroplast function, and the electron transport chain 
(Allakhverdiev et al., 2008; Posch et al., 2019). Water shortages, on 
the other hand, significantly hamper water and nutrient uptake, leading 
to nutritional imbalances that alter root growth, reduce leaf expansion, 
and impair plant metabolism (Gonzalez-Dugo et al., 2010; Rouphael 
et al., 2012). Both stressors also trigger the accumulation of reactive ox-
ygen species (ROS) in plant tissues, damaging cellular functions and 
inhibiting plant growth (Tripathy and Oelmüller, 2012). These changes 
are regulated through intricate signaling networks within plants (Gong 
et al., 2010; Gui et al., 2021), affecting the transmission of electrical sig-
nals among cells, tissues, and organs through modifications in mem-
brane potential, ion channels, and transporters (Zhang et al., 2023;
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Zhu, 2016). This represents the electrical potential difference between 
two points within the plant, enabling rapid response to external 
changes and long-distance information transmission (Napier et al., 
2022; Zhang et al., 2023). Therefore, accurately measuring this potential 
in real time provides a potential approach for assessing plant health 
under abiotic stress conditions. 

The shoot and root systems are where plants grow and develop, in-
teract with the environment, and receive stimulation from biotic and 
abiotic stressors. Leaves on plant shoots drive energy conversion effi-
ciency through photosynthesis and sugar transport and fundamentally 
determine yield formation, while roots anchor the plant, absorb water 
and nutrients, and send hormone signals to aid stress adaptation 
(Kalra et al., 2024; Li et al., 2021), ultimately affecting productivity. 
Therefore, precise measurement of aboveground shoot biomass and be-
lowground root biomass can provide rapid and reliable indicators to 
quantify crop responses to environment-induced stresses. To date, var-
ious methods have been developed and validated for quantifying root 
and shoot biomass, including traditional approaches such as excavating 
and measuring roots (Wen and Ma, 2024) and manually collecting 
aboveground shoots to determine their mass in the laboratory. Several 
rapid and innovative non-destructive methods have also been reported. 
For example, electrical capacitance and impedance measurements have 
been widely tested for estimating root traits under stress (Cseresnyés 
et al., 2021; Wu et al., 2017), based on the principle that plant root 
tips act as ion storage cylinders, forming a resistance-capacitance circuit 
at the soil-root interface (Dalton, 1995; Augé and Stodola, 1990; Goraya 
et al., 2017). However, their reliability is influenced by soil conditions, as 
dry soil reduces conductivity, and overly wet soil can cause current leak-
age, leading to inconsistent readings (Gu et al., 2021). Satellite-acquired 
imagery provides a powerful tool for estimating crop biomass under 
diverse growing conditions (Dong et al., 2016). However, its effective-
ness is often limited by the complex geometry of plant shoots and 
their variable environmental exposure (Fang et al., 2021). The scale of 
canopy size monitored hinders its use in fine-tuning plant phenotyping 
in variety improvement programs. Therefore, significant gaps remain in 
the development of precise, scalable, and real-time monitoring tools to 
assess plant responses to environmental stresses. Furthermore, 
methods capable of simultaneously quantifying root and shoot traits 
are still lacking. 

In this study, we adapted a compact, needle-shaped electrical 
sensor to measure bioelectrical signals in canola and oat (Avena 
sativa L.) plants subjected to heat and drought stress. The sensor cap-
tured voltage differences between two points in plant tissues, 
reflecting electrochemical activities driven by metabolic processes 
and ion transport. Machine learning algorithms were developed 
based on bioelectrical signals to classify plant stress conditions and 
estimate biomass. Additionally, we explored the underlying mecha-
nisms of stress-induced changes in bioelectrical signaling. We hy-
pothesized that healthy plants would display stable and robust 
electrical signals, indicative of normal metabolic and physiological 
processes, while stressed plants would exhibit altered electrical pat-
terns, reflecting disruptions in ion transport and cellular function. By 
integrating bioelectrical signals with machine learning-based pre-
dictive models, this study can improve our understanding of plant re-
sponses to environmental stress and develop early stress monitoring 
systems and new methods for biomass estimation, thus filling gaps in 
plant phenotyping analysis. 

2. Materials and methods 

2.1. Experimental design 

We conducted three experiments on canola and oat crops in growth 
chambers and greenhouses in 2021–2022 to evaluate the viability and 
2

performance of a newly introduced signal sensor across different grow-
ing environments. 

Exp I: Canola heat experiment. The study was conducted in a split-plot 
design under chamber-controlled environments. Air temperature varia-
tion across different growth chambers was the main plot factor, and ca-
nola hybrid (InVigor L233P and InVigor L252) within each chamber was 
the subplot factor. Three hybrid seeds were sown in each biodegradable 
pot (15 cm in diameter × 15 cm in height) and were thinned to one 
plant per pot at 7 days after planting (DAP). After planting, pots were 
transferred to growth chambers (Model GR 96, CONVIRON, Controlled 
Environment Ltd., Winnipeg, MB) to facilitate seed germination. The 
heat treatment commenced at 20 DAP for 10 days, adhering to a 
24-h cycle designed to simulate the typical meteorological temperature 
variations observed during the canola growing season in Ottawa, ON, 
Canada (Biswas et al., 2019). The heat treatment was patterned as: 2: 
01–10:00 = 23 °C, 10:01–11:00 = 26 °C, 11:01–12:00 = 29 °C, 
12:01–16:00 = 32 °C, 16:01–17:00 = 29 °C, 17:01–18:00 = 26 °C, 
18:01–22:00 = 23 °C, 22:01–2:00 = 26 °C, while the control chamber 
was maintained at a constant 23/17 °C (light/dark). 

Exp II: Canola drought experiment. This greenhouse study was carried 
out in a split-plot design, where watering level was assigned as the main 
plot factor and canola hybrid as subplot. The hybrids used were InVigor 
L233P, noted for its drought tolerance, and InVigor L252, known for its 
sensitivity to drought based on a prior field study (Wen et al., 2023b). 
Three seeds were initially sown in each pot (16.5 cm in diameter × 
16.5 cm in height) and thinned to one seedling at 10 DAP. Plants were 
subjected to three watering levels – well-watered as control, moderate 
drought, and severe drought during two critical growth stages: vegeta-
tive (4 true leaves) and early flowering (20 % flowering). The watering 
treatment lasted for 15 days and an automated irrigation system 
equipped with capacitive soil moisture sensors (Capacitive Soil Mois-
ture Sensor v1.2) and Raspberry Pi as controllers. Soil moisture levels 
were maintained at 80–85 % water holding capacity (WHC) for control 
conditions, 55–65 % WHC for moderate drought, and 35–45 % WHC 
for severe drought, which were calibrated using soil moisture set 
SM150T with HH2 meter. After treatment, the watering was adjusted 
to maintain WHC at 80–85 % until the crop matured. In this study, we 
merged signals measured at both growth stages, focusing specifically 
on using these signals as indicators of different watering level s.

Exp III: Oat drought experiment. The experimental design and man-
agement details are elaborated in Wen et al. (2023a).  Briefly, the exper-
iment consisted of 30 oat varieties grown in cone pots. A total of 8 oat 
seeds were sowed and thinned to four plants per pot at 10 DAP. At the 
heading stage, the watering regime was adjusted to maintain soil mois-
ture at 80–85 % WHC in the control group, and 35–45 % WHC in the 
drought treatment group for 15 days. Prior to and following the treat-
ment phases, all pots were well watered to ensure at least 80 % WHC .

For all three experiments, the soil mix used to fill the pots consisted of 
sieved topsoil, vermiculite, peat moss, and perlite in a 6:1:1:1 volume 
ratio, with its physiochemical properties reported in Wu et al. (2017). 
All treatments were fertilized with an N-P2O5-K2O  ratio  of  20–20-20 and 
applied bi-weekly (0.1 g per container for oat and 1 g per pot for 
canola). Both the growth chambers and greenhouses were set to a consis-
tent 16/8-h light/dark cycle. In the drought experiments, the air tempera-
ture was maintained at 25 °C during the day and 18 °C at night, with 
45–55 % relative humidity and a minimum photosynthetic photon flux 
density (PPFD) of 300 μmol m−2 s−1 on cloudy days. For the canola heat 
experiment, the chambers provided a PPFD of approximately 
500 μmol m−2 s−1 at canopy level and maintained 70–75 % relative hu-
midity. The environment in the growth chambers was continuously mon-
itored at 5-min intervals using a BOHO logger, while the environmental 
conditions in the greenhouses were regulated using an ARGUS platform. 
The canola heat experiment was replicated seven times, and the drought 
experiments were replicated four times.
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2.2. Sample collection 

Plant electrical signals were recorded using a needle-like biosensor, 
which consisted of coaxial cable (2.8 mm diameter) with central con-
ductor wire (silver coated copper filament diameter < 0.5 mm) incor-
porated into the PhytlSigns platform (Vivent Sàrl, Crans-près-Celigny, 
Switzerland). This platform, powered by a Raspberry Pi 4B with an alter-
nating current (AC) to direct current (DC) converter, digitized the 
sensed data to ensure accurate measurements. To stabilize signal acqui-
sition, for canola, the positive electrode was inserted deeply into the 
conductive bundle of the first fully developed green leaf from the bot-
tom; and for oat, it was inserted into the stem 5–7 cm above the soil sur-
face (Fig. 1, 2a, 3c, and 4b). The negative electrode was positioned at the 
root crown about 1–2 cm above the soil surface. Our experiments were 
carefully designed to ensure that needle insertion, maintenance, and 
monitoring were in the same locations and exerted similar forces on 
treated and control plants. To minimize the impact of water during 
plant watering, the contact points between the plant tissue surface 
and the signal sensor were sealed with melted wax. Electrodes were 
checked every 10-min, twice per session, to ensure stability and replace 
as needed. Data were recorded as electric potential over time and stored 
as raw files on the Raspberry Pi. The electrical frequency during sam-
pling was set to 256 Hz, meaning that 256 signal voltage data points 
were collected per second. In this study, biosignal monitoring was per-
formed carefully and uniformly on treated and control plants by the 
same personnel, taking into account the week intensity of electrical sig-
nals and the potential damage caused by bioneedle insertion. Addition-
ally, a control study was conducted in which a subset of plants was left 
uninserted to compare their growth and physiological responses with 
Fig. 1. The overview scheme of electrical signal measurement and data analysis in studies of hea
electrode was inserted into the petiole of the first fully developed green leaf starting from the bo
bottom. Negative electrodes were positioned in the root crown, about 0.5 cm above the soil sur
sec−1 and segmented into intervals of 1, 5, 10, 20, and 30 min for detailed feature extraction an
and predict plant below- and above-ground biomass. (For interpretation of the references to c
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sensor-equipped plants. No significant differences were observed in 
biomass accumulation or stress responses between the two groups, sug-
gesting that the insertion strategy did not introduce measurable inter-
ference with plant physiology or electrical signal measurements. To 
ensure consistency, stable signal data recorded approximately 3-h 
after needle insertion were selected for comparative analysis between 
heat- or drought-stressed plants and their respective controls. 

In Exp I, the entire canola plants were harvested immediately after 
the treatment ended by cutting them just above the soil surface. The 
above-ground parts were sectioned into 1–2 cm pieces and stored in en-
velopes. The roots were thoroughly cleaned and then scanned. Both the 
roots and shoots were dried at 80 °C for one week to determine dry bio-
mass. In Exp II and III, the plants were collected after reaching maturity 
and then divided into shoots and roots, following the same protocol as 
Exp I. This included sectioning, cleaning, scanning, and drying to mea-
sure dry biomass. Across all three experiments, our goal was to evaluate 
whether signal measurements can be utilized for early biomass estima-
tion. Predesigned signal data durations were selected for comparison 
between treated and control plants to eliminate interference with 
circadian rhythms. 

2.3. Data processing 

Once the plant signals were recorded, the raw data were extracted 
and converted into parquet format using Python (Version 3.11.5). 
Subsequently, the signal series were loaded into a DataFrame and seg-
mented into intervals of 1, 5, 10, 20, and 30 min. Since light intensity, 
O2/CO2 concentration, humidity, and temperature in growth chambers 
and greenhouses were automatically adjusted, the motor-forced air
t and drought stress in canola and oat plants. Electrode placement: For canola, the positive 
ttom, and for oat plants, it was inserted into the first extended internode starting from the 
face. Signal recording and processing: Signals were recorded at a frequency of 256 samples 
d analysis. Machine learning prediction: Use different models to classify plant health status 
olour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Canola response to heat stress and predictive modeling performance. (a) Placement of electrodes in canola for signal capture in the petiole and root crown zone. (b) Biosensor and 
canola plants deployment in the chamber. (c) Signal recorded over a 2-h period in control and heat-treated plants, showing lower values in heat-stressed canola. (d) Accuracy in predicting 
the effect of heat stress using machine learning models: K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and Random Forest (RF). (e) Confusion matric illustrating the per-
formance of machine learning algorithms in identifying heat stress tolerance levels of different canola varieties. (f) & (g) RF-based predictions for shoot and root biomass from 30-min 
signal episodes, with embedded bar plots displaying biomass under heat and control conditions for different hybrids. R2 values, p-values, and regression slopes demonstrate the correlation 
between predicted and actual values, with the ideal 1:1 line indicating perfect predictions.
gas exchange was expected to cause signal irregular fluctuations in the 
signal. The watering and fertilization process could also cause additional 
disturbances. Therefore, we adopted windowing with a step size of 100 
and first-order differencing techniques to remove noisy signals because 
of their high effectiveness (Priyanka, 2017). Following noise removal, 
several preprocessing steps were undertaken to refine the data, which 
included feature extraction, normalization, and labeling. For each signal 
episode, we extracted 14 distinct features (Table 1) and normalized 
these features using the formula: 

X 
x − x 
σ

where X, x, x, σ represent the normalized feature vector, the noise-
removed signal data, the arithmetic mean, and the standard deviation 
of the signal data, respectively .
4

2.4. Establishment of machine learning algorithms 

To assess plant health, we utilized three supervised machine learn-
ing classifiers: K-Nearest Neighbors (KNN), Random Forest (RF), and 
Support Vector Machines (SVM) based on the sklearn package in 
Python (version 3.11). The hyperparameters for each algorithm were 
optimized through 10-fold cross-validation to enhance model reliability 
and performance. Due to the limited size of the dataset, model perfor-
mance was primarily evaluated using the leave-one-out cross-
validation procedure. Since the RF classifier performed superior to 
other models, particularly in the oat experiment and the demonstrated 
power of RF in forecasting grain yield and optimal N rates (Wen et al., 
2021; Wen et al., 2022), its regressor was further applied to predict 
shoot and root biomass. Simple regression analysis was conducted be-
tween the actual and predicted values. The coefficient of determination
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Fig. 3. Canola response to drought stress and predictive modeling outcomes. (a) Canola health status under various irrigation treatments. (b) Overview of biosensor deployment. 
(c) Insertion points of biosensor electrodes in the canola plants. (d) Effects of drought on shoot and root biomass in specific canola hybrids. (e) Signal variation over 2 h for control, mod-
erate, and severe drought-stressed canola. (f) Prediction accuracy for drought stress effects using K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and Random Forest (RF). 
(g) & (h) Predictions of shoot and root biomass using RF based on 30-min signal episodes, with R2 values and p-values indicating model accuracy and statistical significance. Regression line 
slopes and the 1:1 line demonstrate the correlation between predicted and actual values. L233C, L233M, and L233S represent the control, moderate, and severe drought of canola hybrid 
L233. Similarly, L252C, L252M, and L252S refer to the control, moderate, and severe drought of canola hybrid L252.
(R2 ), p-value, and the slope of the regression equation were used to 
evaluate the model's prediction performance. Once acceptable results 
for plant health detection and biomass estimation were determined, 
the features of the 30-min signal measurements were further analyzed 
using relative importance analysis with RF to examine how heat or 
drought stress affected signal patterns. Furthermore, Pearson correla-
tion analysis was performed to determine the relationship between 
these signal features and crop shoot and root biomass. 

3. Results 

3.1. Biosignaling responses to abiotic stress 

Analysis of raw electrical signals showed that healthy canola exhib-
ited a more stable signal potential with an average of 26 mV during the 
30-min measurements. Heat exposure significantly reduced signal 
strength by up to 57 % (Fig. 2c). Interestingly, the signal changes were 
not always synchronized with changes in air temperature but showed 
significant delays depending on the measurement time point and air 
temperature. For example, an increase in air temperature from 26 to 
29 °C resulted in a visual signal drop after one hour, while a further in-
crease in temperature to 32 °C led to a rapid signal drop within 45-min 
(Fig. 2c). Interestingly, this reduction in signal intensity is the opposite 
direction of the signal and absolute value of the electrical potential 
may have actually increased. Drought stress also significantly affected 
the signal potential, with signal intensity decreased by up to 59 % in 
stressed plants (Fig. 3e). As soil moisture decreased, plant signal poten-
tial dropped systematically from 27 mV under control conditions to 
11 mV under severe drought. Compared to canola, oat crops exhibited 
larger signal fluctuations over time, as shown in both healthy and 
drought-affected plants (Fig. 4c). Healthy oat plants displayed signal 
5

voltages ranging from 12 to 16 mV, while plants under drought condi-
tions showed a gradual decrease in signal potential from 6 to 2 mV 
over the course of 30 min of measurement. 

Analysis of the signal feature importance across different growing 
environments revealed that SET was the most influential factor during 
the heat-stress experiment, followed by basic statistical metrics 
(Fig. 5a). On the contrary, signal SUM emerged as the most critical 
feature under drought treatment (Fig. 5b and c). Considering the defini-
tion of each feature in Table 1, we concluded that heat stress primarily 
increased the complexity of electrical potential change pattern, making 
the signals more irregular. In contrast, drought stress had minimal 
impacts on signaling patterns, as indicated by the lower importance 
of STM.

3.2. Biosignals-based plant health detection 

Using machine learning models to identify stressed crops, signal 
measurement efficiently and rapidly distinguished plant health status. 
Within the 1-min signal measurements, KNN identified over 89 % (25 
out of 28) of healthy and 96 % (27 out of 28) of heat-stressed canola 
plants (Fig. 2e). Although SVM and RF performed less effectively, they 
still detected over 80 % of stressed plants. With continuous signal 
recording, the plant health identification capacity progressively in-
creased to over 90 % for all three models with 30-min signal measure-
ments. Interestingly, we observed significant improvements in overall 
prediction accuracy over time, suggesting that longer signal windows 
provided more detailed insights into canola hybrid-specific plant health. 
For instance, within the first minute, the models correctly detected 
36–39 % of canola hybrid and treatment combinations, and after 
30 min of signal measurement, the accuracy of the KNN and RF models 
increased to 86 % (Fig. 2d). SVM performance lagged, identifying
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Fig. 4. Oat response to drought stress and predictive modeling outcomes. (a) Oat growth under control and drought conditions. (b) Illustration of electrode attached position in plants for 
signal capture. (c) Raw signals from control and drought-treated oats recorded over two hours. (d) Prediction accuracy of machine learning models of K-Nearest Neighbors (KNN), Support 
Vector Machines (SVM), and Random Forest (RF) using different time-based signal episodes. (e) & (f) RF predictions of oat shoot and root biomass based on 30-min signal episodes, with R2 

values and p-values indicating the model's predictive power and statistical significance, respectively. The regression line slopes and the 1:1 line show the relationship between predicted 
and actual values.
approximately 66 % of hybrid-treatment combinations after 30 min of 
signal measurement. Likewise, in drought studies, extending the signal 
measurement time progressively captured the environmental factors of 
soil moisture and the distinct responses of individual cultivars (Fig. 3f). 
In the study of 30 oat cultivars responding to drought, 30-min signal 
measurements successfully identified more than 70 % of cultivar × 
drought groups (Fig. 4d). Overall, the signal measurement easily 
distinguished healthy and stressed plants, but its ability to explore the 
variability between crop cultivars posed a challenge to the accuracy of 
short-term signals. Across three experiments, the RF model consistently 
outperformed the other two machine learning models in detecting 
6

plant health status. Therefore, below we used the RF algorithm in the 
next step to estimate plant shoot and root biomass. 

3.3. Shoot and root biomass estimation 

In Exp I, shoot biomass of healthy canola plants averaged 4.7 g 
plant−1 for Invigor L233P and 3.3 g plant−1 for Invigor L252. The high 
temperature treatment significantly increased shoot biomass by 26 % 
for Invigor L233P and 78 % for Invigor L252 (Fig. 2f). Meanwhile, heat 
stress increased the root biomass of InVigor 252 by an average of 70 %, 
whereas the root biomass of InVigor L233P did not change (Fig. 2g).
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Table 1 
Features used for establishing models, along with their explanations and calculation formulas. 

Features Functions/Explanations Formulas 

Mean Mean E  x  iArithmetic mean of the data points.
Minimum (Min) The smallest value in a dataset. 
Maximum (Max) The largest value in a dataset. 
Median The middle value in a dataset, calculated by arranging the data in 

ascending order and then finding the middle value. 
When n is odd: Median xn 1 

2 

When n is even: Median 1 
2 xn xn 

2 2 1 

Lower quartile (Q1) Q1 separates the lower 25 % of data from the higher 75 %, calculated by 
arranging the data in ascending order and then finding the 1/4th value. 

th 
Q1 n 1 

4 Term where Term presents the signal series with the attribute 
that the data values are from smallest to largest. 

Upper quartile (Q3) Q3 separates the lower 75 % of data from the higher 25 %, calculated by 
arranging the data in ascending order and then finding the 3/4th value. 

th 
Q3 3 n 1 

4 Term where Term presents the signal series with the 
attribute that the data values are from smallest to largest. 

SUM ∑n 
i 1xi Summation (Sum) The sum value of data points. 

Variance (Var) Var E  xi − μ 2Var reflects the distance of each data point from the mean value in the 
dataset, measuring the degree of dispersion between data points. 

Standard deviation (Std) Std Var2 Square root of variance.

Kurtosis (KURT) KURT measures the probability distribution of a random variable and 
describes the shape of the probability distribution. 

4 KURT E xi − μ 
σ

Skewness (SKEW) SKEW describes the asymmetry of a dataset with a normal distribution. 
The sign of SKW indicates which side the data are skewed (positive 
value = right, negative value = left). 

3 SKEW E xi − μ 
σ

Log energy entropy (LEE) LEE − ∑n 
i 1Pi log Pi where Pi is the normalized log-energy value 

for each segment.

LEE provides the complexity and regularity of the signals.

Sample entropy (SE) SE − log C 3, 0 2σ 
C 2, 0 2σ where C 3, 0 2σ is the number of embedded vectors 

of length 3 having a Chebyshev distance inferior to 0 2σ and C 2, 0 2σ is 
the number of embedded vectors of length 2 having a Chebyshev dis-
tance inferior to 0 2σ .

SE measures the complexity of time-series signals. Greater SE values 
indicate higher complexity, while smaller values characterize more 
self-similar and regular signals. 

Sample entropy (SET) SET m, r, N − ln A B where m is the embedding dimension (segment 
length), r is the similarity tolerance, N is the time series length, A is the 
count of sequence pairs of length m + 1 within r, and B is the count of 
sequence pairs of length mm within r.

SET quantifies the regularity or predictability of signal datasets. Lower 
values indicate more self-similarity (regularity) in the data while higher 
values indicate more randomness/complexity in the datasets. 

These features were derived through modifications of those described in Tran et al. (2019).
Both canola hybrid cultivars exhibited a similar decrease in shoot and 
root biomass of approximately 50 % when subjected to drought stress 
(Fig. 3d). Similar effects of drought stress were observed for oat bio-
mass, as detailed in Wen et al. (2023a). 

After 30 min of recording, signal measurements explained 95 % of 
the shoot biomass in the canola heat stress experiment, predicting an 
actual biomass slope of 0.93 (Fig. 2f). This indicated that for lower bio-
mass the predicted values were slightly higher and vice versa for higher 
biomass above 5.5 g plant−1 . A similar pattern was observed in the ca-
nola drought stress study, where 30-min signals accounted for about 
92 % of shoot biomass (Fig. 3g). However, in the oat experiment 
consisting of 30 cultivars, the predictive accuracy dropped significantly, 
with an R2 of 0.62 and a slope of 0.67, showing discrepancies in biomass 
estimation, especially for plant biomass above 1.4 g plant−1 (Fig. 4e). In 
contrast, root biomass predictions were less accurate. The 30-min signal 
explained 88 % of the actual root biomass in the experiment involving 
two canola cultivars and different temperatures (Fig. 2g). The same sig-
nal episode explained 89 % of root biomass across three drought 
conditions for the canola cultivars (Fig. 3h). The biosignal sensor 
profiled a significant decline in predicting root biomass across 30 oat 
cultivars, with an R2 of 0.58 and slope of 0.70, highlighting the challenge 
of accurately predicting root biomass in tests involving multiple diverse 
genotypes (Fig. 4f). 

Analyzing the linear relationships between biomass and signal 
features revealed that root and aboveground plant biomass were pri-
marily related to SET in the canola heat stress experiment (Fig. 6). In 
the canola drought experiment, biomass increased or decreased line-
arly with most signal features. This linear relationship was less evi-
dent in the oat drought experiment, suggesting that the predictive 
accuracy of the linear model may decrease as classification complex-
ity increases.
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4. Discussion 

4.1. Effects of stress on plant biomass 

The frequency of extreme heat events during summer is increasing, 
significantly impacting the productivity of main field crops. In this study 
we observed that heat stress during the vegetative stage significantly in-
creased both shoot and root biomass in canola (Fig. 2f and g). This is 
completely different to those subjected from heat stress during the 
flowering stage, where high air temperatures damaged fertility organs, 
disrupted physiological enzyme activities, and affected pollination, ulti-
mately reducing the overall productivity of canola crops (Wen et al., 
2021; Wu et al., 2020). For example, our recent field studies conducted 
across Canada revealed that yield responses to nutrient supply in over 
80 % of the cases were significantly affected by drought, heat, or a com-
bination of both (Wen et al., 2023b, 2024). Biswas et al. (2019) and 
Wollenweber et al. (2003) reported that the physiological response of 
plants to heat stress depends on temperature and growth stage and a 
moderate increase in temperature during the early growth stages may 
actually enhance the rate of photosynthesis and dry matter accumula-
tion. Thus, the vegetative stage may have a higher temperature thresh-
old value because the maximum temperature was higher than the 
threshold value of 29.5 °C for flowering canola reported by Morrison 
and Stewart (2002). Additionally, higher air temperatures accelerated 
plant evapotranspiration rates (Biswas et al., 2019), and sufficient 
watering helped cool leaf temperatures, ensuring continued enzyme 
activity and nutrient uptake by roots, which resulted in higher biomass 
accumulation. In contrast, drought stress reduced both shoot and root 
biomass of canola and oat crops primarily due to decreased nutrient up-
take and utilization, reduced leaf area, and lower photosynthetic rates 
(Wu et al., 2018; Zhao et al., 2021).
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Fig. 5. The relative importance for each feature extracted from signal measurements during 30-min episodes for treatment prediction in Exp I (a), Exp II (b), and Exp III (c) using random 
forest methods. In Exp I, predictions were made for four combinations of two genotypes and two temperature treatments. In Exp II, classifications involved two genotypes and three 
drought levels. In Exp III, predictions encompassed thirty genotypes and two drought levels.
4.2. Effects of stress on biosignals 

In all three experiments, we observed fluctuating signals in both 
healthy and stressed plants. These signal variations were determined 
by complex internal biochemical and physiological metabolic activities 
within the plant tissues, as well as charged ionic flow through the 
plant's vascular system caused by the surrounding environment (Tran 
et al., 2019). For canola plants under controlled conditions, the relatively 
stable electrical potential indicated preserved ion homeostasis, mem-
brane integrity, and nutrient element uptake, which are essential for 
healthy plant growth and development. However, complex patterns of 
signal variations were observed when subjected to heat treatment 
(Fig. 2c  an  d Fig. 5a). This is largely due to the complex temperature set-
tings, designed to simulate the full 24-h diurnal temperature cycle ob-
served in Ottawa during the summer. Using a threshold value of 
29.5 °C for canola (Morrison and Stewart, 2002), the plants only experi-
enced heat stress between 12:00 and 16:00. Thus, elevated tempera-
tures before the stress period (e.g., 11:00–12:00) initially stimulated 
enzyme activity and metabolic processes, enhancing water and nutrient 
absorption and the activity of ion pathways. However, during the stress 
Fig. 6. The simple correlation coefficients for each feature extracted from signal measureme
or *, **, and *** indicate not significant at p < 0.05, or significant at 0.01 ≤ p < 0.05, 0.001 ≤ p <
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period, prolonged exposure to high temperatures disrupted membrane 
stability and ion fluxes, leading to rapid accumulation of ROS and the 
transient transmission of electrical signals in plants for hormone regula-
tion (Elferjani and Soolanayakanahally, 2018; Grinberg et al., 2022). 
These physiological and biochemical changes alter the function of ion 
channels and pumps, leading to shifts in ion concentrations, particularly 
the loss of K+ and the influx of Ca2+ , which may lead to electrical signals 
to propagate rapidly, triggering downstream protection mechanisms, 
such as stomatal closure, antioxidant enzyme activation, and stress-
related gene expression (Demidchik, 2010; Tripathy and Oelmüller, 
2012; Bhattacharya, 2019; Lamaoui et al., 2018). These electrical 
changes are consistent with known pathways in abiotic stress signaling, 
including the abscisic acid and jasmonic acid response networks. Addi-
tionally, to reduce leaf temperatures under heat stress, plants need to 
increase water uptake from the soil, prioritizing water over nutrient ab-
sorption. Higher water influx may cause dilution of the charged ion con-
centration in the xylem sap, resulting in a decrease in electrical voltage 
values (Fig. 2c). 

Our data showed that drought stress reduced the electrical potential 
between the stem and root crown in both canola and oat plants, which
nts during 30-min episodes with the shoot and root biomass for Exp I, II, and III. The ns, 
 0.01, and p < 0.001, respectively.
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was mainly attributed to the reduced water potential and photosyn-
thetic electron transport (Pukacki and Kamińska-Rożek, 2005). As soil 
moisture reduction-induced soil nutrients unavailability for root uptake 
and cavitation of plant xylem hinder the transport of mineral elements 
in the xylem and decrease the voltage difference between the stem and 
root crown (Choat et al., 2015; Seleiman et al., 2021). At the cellular 
level, water scarcity in plants can dramatically disrupt the delicate ion 
gradients across cellular membranes, which in turn hindered the signal 
communication (Gil et al., 2008) and reduced electrical potential be-
tween the roots and leaves (Fig. 3e  an  d 4e). However, as drought stress 
persists and intensifies, the plant adaptive responses gradually weaken, 
and prolonged drought reduced the effectiveness of these mechanisms 
(Lata et al., 2015; Yang et al., 2021). This is in good agreement with our 
findings, which showed that drought stress primarily affected the elec-
trical potential values (e.g., Sum, Mean, and Median metrics) and has a 
relatively small impact on signal pattern complexity (Fig. 5b and c). 

4.3. Plant health indication and biomass estimation 

In this study, we explored the feasibility of using signal measure-
ment with machine learning algorithms to identify plant responses to 
the duration and extent of heat and drought stress. Among the three 
models tested, RF demonstrated the highest predictive accuracy. This 
may be attributed to its ensemble learning approach, which reduces 
overfitting, effectively handles nonlinear relationships, and manages 
missing data better than KNN and SVM. The performance of KNN was 
likely limited by its sensitivity to noisy data, while SVM may have strug-
gled with parameter optimization and computational complexity. 
Across all three models, the progressive improvement in prediction 
accuracy over monitoring time vividly underscores the importance of 
capturing extended physiological data for robust stress detection in 
plants (Fig. 2e, 3f, and 4d). Within short observation windows, it was ef-
ficiently to detect stressed plants from healthy ones. However, distin-
guishing crop cultivars with same health status, such as different oat 
cultivars under drought conditions, was challenging. This was mainly 
because similar signal patterns were observed between plants of the 
same treatment, whereas the signal changed significantly when crops 
were stressed compared to health plants. As signals were continuously 
measured, the underlying detailed patterns between cultivars were pro-
gressively identified. For example, when we extended the signal period 
from 1 min to 30 min, the accuracy of the RF model improved signifi-
cantly from 39 % to 85 % (Fig. 2d), which was mainly due to the 
improved accuracy in identifying the cultivars. 

The observed differences in shoot and root biomass responses to ex-
ternal heat and drought stress, coupled with the high accuracy of signal-
based crop health predictions, suggest that signal measurements may 
be an effective method to quantify plant biomass. This is because plant 
biomass is the result of photosynthesis and the assimilation of nutrients 
absorbed from the soil and air through biochemical processes involved 
in the transmission of signaling networks (Irving, 2015; Shiade et al., 
2024). This conclusion is well supported by our results that signal esti-
mates accounted for 67 % to 95 % of variation in belowground and 
aboveground biomass, outperforming some high-throughput pheno-
typing methods such as estimates based on drone imagery (Wang 
et al., 2021). This suggests that the introduction of bio-electrical signals 
could be a major advance in the convergence of biotechnology and dig-
ital technologies, allowing plant scientists and agronomists to predict 
and address potential agricultural challenges early or to select targeted 
plant genotypes in breeding programs. However, additional features 
and further model refinement are needed to enhance health status 
and biomass predictions across various crop varieties and genotypes. 
Continuous advancements in machine learning models, supported by 
a deeper understanding of plant abiotic stress physiology, are crucial 
for developing reliable and broadly applicable predictive tools in 
agriculture. 
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4.4. Optimizing bioelectrical sensing for agricultural applications 

Conventional methods of assessing plant stress and biomass, such as 
visual observation and destructive sampling, are labor-intensive and 
time-consuming. While high-throughput alternatives like thermal im-
aging and spectral reflectance indices offer efficiency, they require 
specialized equipment. In contrast, bioelectrical sensing provides a 
low-cost, real-time, and continuous monitoring solution with the poten-
tial for high accuracy and scalability, particularly in controlled environ-
ments such as breeding programs rapid generation advancement in 
plant and crop greenhouse production. However, scaling up monitoring 
for field applications based on bioelectrical signals faces challenges due 
to environmental factors like soil heterogeneity, wind, plant-to-plant 
variations among plant populations. Additionally, power supply and 
data transmission for continuous monitoring pose logistical challenges, 
necessitating energy-efficient and wireless sensor networks. Despite 
these obstacles, advances in sensor miniaturization, machine learning-
driven signal processing, and Internet of Things (IoT) technologies 
could support real-time, large-scale deployment of precision agriculture, 
enabling early stress detection and improved biomass estimation. 

This study demonstrated the ability of bioelectrical sensing to enable 
early detection of physiological responses to heat and drought stress 
through electrical potential monitoring, which correlates well with bio-
mass measurements. However, the complexity of signal processing and 
the mildly invasive nature of needle insertion remain concerns. Future 
research should focus on optimizing sensor placement, improving 
data interpretation, and integrating bioelectrical sensing with remote 
sensing technologies to enhance precision and field applicability. In ad-
dition, a cost-benefit analysis is necessary to compare bioelectrical sens-
ing with conventional stress detection and biomass estimation methods 
to evaluate its practical advantages and challenges. 

5. Conclusions 

In this study, we documented that biosignals measured by needle-
shaped sensors displayed distinct patterns between healthy and 
stressed plants. Machine learning algorithms effectively captured 
these patterns to quantify plant health status within 30-min of monitor-
ing, with performance influenced by the complexity of the experiment, 
particularly the number of genotype-by-treatment combinations. In this 
study, we found that heat stress primarily disrupted signal patterns, in-
creasing their irregularity and unpredictability. In contrast, drought 
stress affected signal intensity, likely reflecting a reduced flow rate of 
charged ions through the plant stems. The microsensors used, combined 
with advanced machine learning models, could be valuable tools for 
agronomists and plant researchers aiming to rapidly select superior 
crop cultivars with better tolerance to unpredictable environmental 
stresses. 

While this study highlights the potential of using bioelectrical 
signals for biomass estimation, the accuracy varied due to factors 
like electrode placement, plant development, and environmental 
fluctuations. Refining signal processing and integrating comple-
mentary sensing, such as hyperspectral imaging, could improve re-
liability. Further research should focus on bioelectrical sensing 
through deep learning, multi-sensor fusion, and large-scale field 
trials. Wireless and IoT-enabled sensor networks will enhance 
real-time monitoring and accelerate the adoption of sustainable 
crop management. 
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